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Shannon Mutual Information
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I(X;Y) = H(X) — HX|Y)
= H(Y)- HY|X
= H(X)+ H(Y) - H(X,Y)
= H(X,Y) - H(X|Y) — HY|X)
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Shannon Mutual Information
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Shannon Mutual Information
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Definitions and Notations

bhiTiE2X%

NANJING UNIVERSITY OF SCIENCE & TECHNOLOGY

Let2 = {f: X U {o} - P(Y)}. We say that V C 1 is a predictive family if it satisfies
Vf € V,VP €range(f), 3If €V, st VxeX,f'[x]=P, f'[e]=P

Let X, Y be two random variables taking values in X’ X Y, and V be a predictive family. Then the predictive
conditional V-entropy is defined as

Hy(Y 1X) = InfEy -y [-logf[x]()]
Hy(Y19) = infE,.y[~logf[e] ()]

Let X, Y be two random variables taking values in X X Y, and V be a predictive family. The predictive V-
information from X to Y is defined as

Iy(X >Y)=Hy(Y |2) —Hy(Y | X)
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Properties of V-Information

Let Y and X be any random variables on Y and X, and V and U be any predictive families, then we have
1. Monotonicity: If V € U, then H,(Y) = Hy(Y),Hy,(Y | X) = Hy(Y | X).

2. Non-Negativity: [,(X - Y) > 0.

3. Independence: If X is independent of Y, I;,(X - Y) = I,(Y - X) = 0.

Shannon Mutual Information: Letting t: X’ — X be any function, t(X) cannot have higher mutual
information with Y than X: I(¢(X);Y) < I(X;Y).
V-Information: Denoting t as the decryption algorithm and V as a class of natural language processing

functions, we have that: I,(t(X) - Y) > (X - Y) = 0.

Asymmetry: If V contains all polynomial-time computable functions, then I, (X - h(X )) » Iy(h(X) - X),
where h: X - .
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Properties of V-Information
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V-Information Estimation
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Let X, Y be two random variables taking values in X, Y and D = {(x;, y;)}\=, ~ X,Y denotes the set of samples
drawn from the joint distribution over X and Y.V is a predictive family. The empirical V-information (under

D ) is the following V-information under the empirical distribution defined via D :

L(X->Y;D) = 1nfﬁ Z log — 1nf— z log

(yl) fev IDI (yl

PAC bound over the empirical V-information:

Assume Vf € V,x € X,y € Y,logf[x](y) € [-B, B]. Then for any § € (0,0.5), with probability at least 1 — 26,

we have:

ZIOg%

1D

|Iy(X > V) — [,(X > V;D)| < 4R,p,(Gy) + 2B
where we define the function family Gy, = {g | g(x,y) = logf[x](y), f € V}, and Ry (G) denotes the Rademacher

1
complexity of G with sample number N. Typically, the Rademacher complexity term satisfies Rp|(Gy) = O (IDI_E).
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Structure Learning with V-information

g = argmax z ! (Xi’Xj )
9€Gtree (XiXj)eedge(g)

where [ (X i X j) is the Shannon mutual information between variables X; and X i

m
g- = argmax z Dy oy (Xt(g)(i) - X;)
9€G4_ tree =

where G4_ tree is the set of directed trees, and t(g): N — N is the function mapping each non-root node of
directed tree g to its parent, and V; ; is the predictive family for random variables X; and X;.
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Experimental Results
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Let X, Y denote random variables with sample spaces X, Y respectively. Let @ denote a

null input that provides no information about Y. Given predictive family V € 2 =

{f:Xve-PY)}

 predictive V-entropy Hy(Y) = ];rel]glE[—logz fle](Y)]
 conditional V-entropy Hy(Y|X)= }gf}]E[—logz fIX](Y)]

* P-information Iy(X > Y)=H,(Y)—Hy(Y | X)
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Properties of V-Usable Information

« Non-Negativity: I,(X - Y) =0

* Independence: If X is independentof Y, ,,(X - Y) = 0.

* Montonicity: If U €V, then Hy(Y) = Hy(Y) and Hy (Y | X) = Hy(Y | X)
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V-Usable Information in Practice
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Figure 2. Comparing the V-usable information estimate to accu-
racy in SNLI. In the first three epochs, estimates on the test set are
similar across all models (top), but due to over-fitting, the estimates
diverge and decline. The test accuracy (bottom) for each model
loosely tracks the V-information estimate for that model, since
extracting information makes prediction easier.
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V-Usable Information in Practice
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Figure 1. The Stanford NLI dataset contains more BERT-usable
information than the MultiNLI and CoLLA datasets, making it easier
for BERT-base. Above, the distribution of instance difficulty (PVI)
in the held-out sets for each; dotted lines denote the average PVI.
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Pointwise V-Information

Given random variables X, Y and a predictive family V, the pointwise V-information (PV1) of an

instance (x,y) is

PVI(x - y) = —log,gle|(y) + log,g'[x|(y)

where g € V s.t. E[-logg|[2](Y)] = Hy(Y) and g’ € V s.t. E[-logg'[X](Y)] = H,(Y | X)

PVI is to V-information what PMI is to Shannon information:

I(X;Y) = Exy~pxy) [PMI(x,y)]
IV(X ->Y) = IIE':x,y~P(X,Y) IPVI(x - y)]
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Algorithm

Algorithm 1 After finetuning on a dataset of size n, the
V-information and PVI can be calculated in O(n) time.

Input: training data Dy = {(input z;, gold label y;) };~, held-
out data Dt = {(input x;, gold label y;) } i, model V
do
g’ < Finetune V on Dipin
& +— empty string (null input)
g < Finetune V on {(2, v:) | (xi,yi) € Dirain }
Hy(Y), Hy(Y|X) + 0,0
for (331', yt) € Diest do
Hy(Y) < Hy(Y) — 5 log, 9[2](y:)
Hy(Y|X) + Hy(Y|X) — - log, ¢'[xi](y:)
PVI(z; — yi) < — log, g[2](yi) + log, g'[wi](y:)
end for
Iv(X — Y) = %Zz PVI(QS@, — yi) = Hv(Y) — Hv(Y|X)
end do
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Sentence Label PVI
Wash you! No -4.616
Who achieved the best result No -4.584
was Angela.

Sue gave to Bill a book. No -3.649
Only Churchill remembered No -3.571

Churchill giving the Blood,
Sweat and Tears speech.

Cynthia chewed. No -3.510
It is a golden hair. Yes -3.251
I won’t have some money. No -3.097
You may pick every flower, but No -2.875
leave a few for Mary.

I know which book Mag read, Yes -2.782

and which book Bob said that

you hadn’t.

John promise Mary to shave Yes  -2.609
himself.

Table 1. The 10 hardest (lowest PVI) instances in the CoLLA in-
domain test set for grammaticality detection (label indicates gram-
maticality), according to BERT-base. Examples in red are assessed
to be mislabelled by authors of this work. For e.g., ‘Cynthia
chewed.’ might be grammatical because the verb ‘chew’ could
be intransitive in this usage. This suggests that PvI could be used
to identify mislabelled examples. All of these examples were pre-
dicted incorrectly by BERT-base.
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Figure 3. The distribution of PVI for correctly and incorrectly pre-
dicted instances in each dataset. Note that the point at which
instances start being incorrectly predicted is similar across datasets
(~ 0.5 bits). In contrast, because the label space is different across
CoLA and the other two datasets, such a comparison could not be
made with a performance-based metric.
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Input Transformations

Attribute Transformation Transformed Input

Original PREMISE: Two girls kissing a man with a black shirt and brown hair on the cheeks.
HYPOTHESIS: Two girls kiss.

Shuffled shuffle tokens randomly PREMISE: girls two a kissing man with a black cheeks shirt and hair brown on the
. HYPOTHESIS: kiss two . girls

Hypothesis-only  only include hypothesis HYPOTHESIS: Two girls kiss.

Premise-only only include premise PREMISE: Two girls kissing a man with a black shirt and brown hair on the cheeks.

Overlap hypothesis-premise overlap PREMISE: Two girls [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]

[MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] . HYPOTHESIS:
Two girls [MASK] .

Table 7. Given an NLI instance (see ‘Original’), each transformation isolates some attribute from the input. The headers ‘PREMISE’ and
‘HYPOTHESIS’ were added by us to transform the two sentence inputs into a single text input for all models that were evaluated.
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Slicing Datasets
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Figure 5. The mean PVI of SNLI instances according to BERT-
base, broken down by the overlap length (i.e., the number of tokens
shared by the hypothesis and premise). Entailment examples with
no overlap are the most difficult (i.e., lowest mean PVI).
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